自适应多机构系统(AMAS)将机器学习问题转变为代理之间的本地合作问题。我们提出了Smapy,这是一种基于合奏的AMA用于移动性预测的实施,除合作规则外,还为其代理提供了机器学习模型。通过详细的方法,我们表明,如果将线性模型集成到合作多代理结构中,则可以在基准传输模式检测数据集上使用线性模型进行非线性分类。获得的结果表明,由于多代理方法,在非线性环境中线性模型的性能有了显着改善。
translated by 谷歌翻译
We present Azimuth, an open-source and easy-to-use tool to perform error analysis for text classification. Compared to other stages of the ML development cycle, such as model training and hyper-parameter tuning, the process and tooling for the error analysis stage are less mature. However, this stage is critical for the development of reliable and trustworthy AI systems. To make error analysis more systematic, we propose an approach comprising dataset analysis and model quality assessment, which Azimuth facilitates. We aim to help AI practitioners discover and address areas where the model does not generalize by leveraging and integrating a range of ML techniques, such as saliency maps, similarity, uncertainty, and behavioral analyses, all in one tool. Our code and documentation are available at github.com/servicenow/azimuth.
translated by 谷歌翻译
The proliferation of deep learning techniques led to a wide range of advanced analytics applications in important business areas such as predictive maintenance or product recommendation. However, as the effectiveness of advanced analytics naturally depends on the availability of sufficient data, an organization's ability to exploit the benefits might be restricted by limited data or likewise data access. These challenges could force organizations to spend substantial amounts of money on data, accept constrained analytics capacities, or even turn into a showstopper for analytics projects. Against this backdrop, recent advances in deep learning to generate synthetic data may help to overcome these barriers. Despite its great potential, however, synthetic data are rarely employed. Therefore, we present a taxonomy highlighting the various facets of deploying synthetic data for advanced analytics systems. Furthermore, we identify typical application scenarios for synthetic data to assess the current state of adoption and thereby unveil missed opportunities to pave the way for further research.
translated by 谷歌翻译
Privacy-preserving machine learning has become a key conundrum for multi-party artificial intelligence. Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device). In FL, each data holder trains a model locally and releases it to a central server for aggregation. In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation). While relevant in several settings, both of these schemes have a high communication cost, rely on server-level computation algorithms and do not allow for tunable levels of collaboration. In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss (contrastive w.r.t. the labels). The goal is to ensure that the participants learn similar features on similar classes without sharing their input data. To do so, each client releases averaged last hidden layer activations of similar labels to a central server that only acts as a relay (i.e., is not involved in the training or aggregation of the models). Then, the clients download these last layer activations (feature representations) of the ensemble of users and distill their knowledge in their personal model using a contrastive objective. For cross-device applications (i.e., small local datasets and limited computational capacity), this approach increases the utility of the models compared to independent learning and other federated knowledge distillation (FD) schemes, is communication efficient and is scalable with the number of clients. We prove theoretically that our framework is well-posed, and we benchmark its performance against standard FD and FL on various datasets using different model architectures.
translated by 谷歌翻译
最近,引入了卷积自动编码器(CAE)进行图像编码。他们对最新的JPEG2000方法实现了性能改进。但是,这些表演是使用具有大量参数的大型CAE获得的,并且其训练需要大量的计算能力。\\在本文中,我们使用具有较小的内存足迹和低计算功率使用的CAE解决了有损图像压缩的问题。为了克服计算成本问题,大多数文献都使用拉格朗日近端正则化方法,这些方法很耗时。\\在这项工作中,我们提出了一种约束的方法和一种新的结构化稀疏学习方法。我们设计了一个算法并在三个约束上进行测试:经典$ \ ell_1 $约束,$ \ ell_ {1,\ infty} $和新的$ \ ell_ {1,1} $约束。实验结果表明,$ \ ell_ {1,1} $约束提供了最佳的结构性稀疏性,从而导致内存和计算成本的高度降低,并且与密集网络相似的速率延伸性能。
translated by 谷歌翻译
本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
我们为级别集方法提出了一个数据驱动的均值曲线求解器。这项工作是我们在[arxiv:2201.12342] [1]和[doi:10.1016/j.jcp.2022.1111291] [arxiv:2201.12342] [1]中的二维策略的$ \ mathbb {r}^3 $的自然扩展。 ]。但是,与[1,2]建立了依赖分辨率的神经网络词典相比,在这里,我们在$ \ mathbb {r}^3 $中开发了两对模型,而不管网格大小如何。我们的前馈网络摄入的水平集,梯度和曲率数据转换为固定接口节点的数值均值曲率近似值。为了降低问题的复杂性,我们使用高斯曲率对模板进行了分类,并将模型分别适合于非堆肥和鞍模式。非插图模板更容易处理,因为它们表现出以单调性和对称性为特征的曲率误差分布。尽管后者允许我们仅在平均曲面频谱的一半上进行训练,但前者帮助我们将数据驱动的融合并在平坦区域附近无缝地融合了基线估计。另一方面,鞍形图案误差结构不太清楚。因此,我们没有利用超出已知信息的潜在信息。在这方面,我们不仅在球形和正弦和双曲线抛物面斑块上训练了我们的模型。我们构建他们的数据集的方法是系统的,但是随机收集样品,同时确保均衡度。我们还诉诸于标准化和降低尺寸,作为预处理步骤和集成正则化以最大程度地减少异常值。此外,我们利用曲率旋转/反射不变性在推理时提高精度。几项实验证实,与现代粒子的界面重建和水平设定方案相比,我们提出的系统可以产生更准确的均值曲线估计。
translated by 谷歌翻译
长期或慢性病的人管理是国家卫生系统面临的最大挑战之一。实际上,这些疾病是住院的主要原因之一,尤其是对于老年人,监测它们所需的大量资源导致医疗保健系统可持续性问题。便携式设备和新连接技术的扩散越来越大,可以实施能够为医疗保健提供者提供支持并减轻医院和诊所的负担。在本文中,我们介绍了用于医疗保健的远程监控平台的实现,该平台旨在从不同的消费者移动设备和自定义设备中捕获几种类型的生理健康参数。可以通过Google Fit生态系统将消​​费者医疗设备集成到平台中,该生态系统支持数百个设备,而自定义设备可以通过标准通信协议直接与平台进行交互。该平台旨在使用机器学习算法处理获得的数据,并为患者和医生提供生理健康参数,并提供用户友好,全面且易于理解的仪表板,该仪表板通过时间来监视参数。初步可用性测试在功能和实用性方面表现出良好的用户满意度。
translated by 谷歌翻译
在过去的十年中,通过深度学习方法取得了杰出的结果,对单一语言的语音情感识别(SER)取得了显着的结果。但是,由于(i)源和目标域分布之间的巨大差异,(ii)少数标记和许多未标记的新语言的话语,跨语言SER仍然是现实世界中的挑战。考虑到以前的方面,我们提出了一种半监督学习方法(SSL)方法,用于跨语性情感识别时,当有一些新语言的标签可用时。基于卷积神经网络(CNN),我们的方法通过利用伪标记的策略来适应新语言。特别是,研究了使用硬和软伪标签方法的使用。我们在源和新语言上均独立于语言的设置中彻底评估了该方法的性能,并在属于不同语言菌株的五种语言中显示出其稳健性。
translated by 谷歌翻译
数据最初是由Peter Hammer引入的,对数据的逻辑分析是一种方法,旨在计算逻辑上的理由,以将一组数据划分为两组观测值,通常称为正和负基。将此分区视为对部分定义的布尔函数的描述;然后处理数据以识别属性的子集,其值可用于表征正组对负基组的观测值。 LAD构成了经典统计学习技术的一种有趣的基于规则的学习替代方案,并具有许多实际应用。然而,根据数据实例的属性,组表征的计算可能是昂贵的。我们工作的一个主要目的是通过计算一些给定属性确实表征正组和负面组来提供一些\ emph {先验}的概率来提供有效的工具来加速计算。为此,我们根据我们对其上的信息提出了几种代表观测数据集的模型。这些模型及其允许我们计算的概率也有助于快速评估当前实际数据的某些属性;此外,它们可以帮助我们更好地分析和理解解决方法所遇到的计算困难。一旦建立了模型,计算概率的数学工具就会来自分析组合。它们使我们能够将所需的概率表示为生成函数系数的比率,然后提供其数值的快速计算。本文的另一个远程目标是表明,分析组合学的方法可以帮助分析LAD和相关领域中各种算法的性能。
translated by 谷歌翻译